This paper proposes an approach to moving vehicle tracking in surveillance videos based on conditional random fields (CRF). The key idea is to integrate a variety of relevant knowledge about vehicle tracking into a uniform probabilistic framework by using the CRF model. In this work, the CRF model integrates spatial and temporal contextual information of vehicle motion, and the appearance information of the vehicle. An approximate inference algorithm, loopy belief propagation, is used to recursively estimate the vehicle region from the history of observed images. Moreover, the background model is updated adaptively to cope with non-stationary background processes. Experimental results show that the proposed approach is able to accurately track moving vehicles in monocular image sequences. Besides, region-level tracking realizes precise localization of vehicles.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Visual vehicle tracking based on conditional random fields


    Beteiligte:
    Yuqiang Liu (Autor:in) / Kunfeng Wang (Autor:in) / Fei-Yue Wang (Autor:in)


    Erscheinungsdatum :

    01.10.2014


    Format / Umfang :

    1133456 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Visual Tracking Based on Dynamic Coupled Conditional Random Field Model

    Liu, Yuqiang / Wang, Kunfeng / Shen, Dayong | IEEE | 2016




    Curb reconstruction using Conditional Random Fields

    Siegemund, J / Pfeiffer, D / Franke, U et al. | IEEE | 2010