Self-driving vehicles rely on multimodal motion forecasts to effectively interact with their environment and plan safe maneuvers. We introduce SceneMotion, an attention-based model for forecasting scene-wide motion modes of multiple traffic agents. Our model transforms local agent-centric em-beddings into scene-wide forecasts using a novel latent context module. This module learns a scene-wide latent space from multiple agent-centric embeddings, enabling joint forecasting and interaction modeling. The competitive performance in the Waymo Open Interaction Prediction Challenge demonstrates the effectiveness of our approach. Moreover, we cluster future waypoints in time and space to quantify the interaction be-tween agents. We merge all modes and analyze each mode independently to determine which clusters are resolved through interaction or result in conflict. Our implementation is available at: https://github.com/kit-mrt/future-motion


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    SceneMotion: From Agent-Centric Embeddings to Scene-Wide Forecasts


    Beteiligte:


    Erscheinungsdatum :

    24.09.2024


    Format / Umfang :

    2520577 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    BEHAVIOR PREDICTION USING SCENE-CENTRIC REPRESENTATIONS

    DOUILLARD BERTRAND ROBERT / ZHOU AURICK QIKUN / AL-RFOU RAMI et al. | Europäisches Patentamt | 2025

    Freier Zugriff


    Scene-Centric Identification and Retrieval of Unmanned Aerial Vehicle (UAV) Video Segments

    Berridge, W. T. / IEEE | British Library Conference Proceedings | 2000


    Roadmap towards an ECAC-wide Flight Centric ATC implementation

    Kluenker, Carmo S. / Finck, Tobias | IEEE | 2023


    Forecasts

    Online Contents | 1996