As a typical high-order, nonlinear system, high-speed trains have a high requirement for control precision. In order to address the speed tracking control problem of trains during high-speed operation, a finite-time sliding mode- disturbance rejection controller is designed. Firstly, this paper establishes the state-space equations of a single mass-spring-damper train based on existing research. For the second-order control system, a finite-time sliding mode controller is designed. To address the issues of significant chattering and time delay in the sliding mode controller, a finite-time control law is designed to optimize the controller structure. Secondly, by treating both internal and external disturbances during train operation as extended state estimates, the robustness of the system is enhanced. The Smith predictor structure is combined to further enhance the system's transient characteristics. Additionally, in specific simulation examples, the tracking performance of the proposed finite-time sliding mode disturbance rejection algorithm is compared with traditional PD control and linear sliding mode control, and its effectiveness is analyzed. The simulation results demonstrate that the proposed algorithm has stronger disturbance rejection capability, higher tracking accuracy, and faster response speed compared to other traditional algorithms. This method holds academic value and practical application potential in other speed tracking and motion control scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Research on High Speed Train Speed Tracking Anti-Disturbance Controller with Finite-Time Prediction Compensation


    Beteiligte:
    Jinsong, Ji (Autor:in) / Guangwu, Chen (Autor:in) / Jianqiang, Shi (Autor:in) / Yongbo, Si (Autor:in) / Dongfeng, Xing (Autor:in)


    Erscheinungsdatum :

    11.10.2023


    Format / Umfang :

    2863807 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Research on Speed Tracking Control of Medium Speed Maglev Train Based on Linear Active Disturbance Rejection Controller

    Yang, Jie / Wang, Panpan / Zou, Jiqiang | British Library Conference Proceedings | 2022


    Magnetic-levitation train sensorless compensation speed curve tracking system

    ZHANG WENBAI / CHO WON-CHUL / LIAO ZHIMING et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    A Disturbance-Driven Textual Model for Train Running Time Prediction on High-Speed Railways

    Pang, Zishuai / Wang, Liwen / Schonfeld, Paul M. et al. | ASCE | 2024