For high data rate wireless communication systems, developing an efficient channel estimation approach is extremely vital for channel detection and signal recovery. With the trend of high-mobility wireless communications between vehicles and vehicles-to- infrastructure (V2I), V2I communications pose additional challenges to obtaining real-time channel measurements. Deep learning (DL) techniques, in this context, offer learning ability and optimization capability that can approximate many kinds of functions. In this paper, we develop a DL-based channel prediction method to estimate channel responses for V2I communications. We have demonstrated how fast neural networks can learn V2I channel properties and the changing trend. The network is trained with a series of channel responses and known pilots, which then speculates the next channel response based on the acquired knowledge. The predicted channel is then used to evaluate the system performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Learning the Wireless V2I Channels Using Deep Neural Networks


    Beteiligte:
    Li, Tian-Hao (Autor:in) / Khandaker, Muhammad R. A. (Autor:in) / Tariq, Faisal (Autor:in) / Wong, Kai-Kit (Autor:in) / Khan, Risala T. (Autor:in)


    Erscheinungsdatum :

    01.09.2019


    Format / Umfang :

    972008 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Autoencoder based Robust Transceivers for Fading Channels using Deep Neural Networks

    Mattu, Sandesh Rao / Lakshmi Narasimhan, T / Chockalingam, A. | IEEE | 2020


    Transfer Learning for Maritime Vessel Detection using Deep Neural Networks

    Farahnakian, Fahimeh / Zelioli, Luca / Heikkonen, Jukka | IEEE | 2021



    Interference Classification Using Deep Neural Networks

    Yu, Jianyuan / Alhassoun, Mohammad / Buehrer, R. Michael | IEEE | 2020


    An Autonomous Driving Approach Based on Trajectory Learning Using Deep Neural Networks

    Wang, Dan / Wang, Canye / Wang, Yulong et al. | Springer Verlag | 2021