Autonomous driving approaches today are mainly based on perception-planning-action modular pipelines and the End2End paradigm respectively. The End2End paradigm is a strategy that directly maps raw sensor data to vehicle control actions. This strategy is very promising and appealing because complex module design and cumbersome data labeling are avoided. Since this approach lacks a degree of interpretability, safety and practicability. we propose an autonomous driving approach based on trajectory learning using deep neural networks in this paper. In comparison to End2End algorithm, it is found that the trajectory learning algorithm performs better in autonomous driving. As for trajectory learning algorithm, the CNN_Raw-RNN network structure is established, which is verified to be more effective than the original CNN_LSTM network structure. Besides, we propose an autonomous driving architecture of a pilot and copilot combination. The pilot is responsible for trajectory prediction via imitation learning with labeled driving trajectories, while the copilot is a safety module that is employed to verify the effectiveness of the vehicle trajectory by the results of the semantic segmentation auxiliary task. The proposed autonomous driving architecture is verified with a real car on urban roads without manual intervention within 40 km.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An Autonomous Driving Approach Based on Trajectory Learning Using Deep Neural Networks


    Weitere Titelangaben:

    Int.J Automot. Technol.


    Beteiligte:
    Wang, Dan (Autor:in) / Wang, Canye (Autor:in) / Wang, Yulong (Autor:in) / Wang, Hang (Autor:in) / Pei, Feng (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.12.2021


    Format / Umfang :

    12 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Deep Learning Based Autonomous Driving in Vehicular Networks

    Su, Zhou / Hui, Yilong / Luan, Tom H. et al. | Springer Verlag | 2020


    HEADLIGHT RANGE ESTIMATION FOR AUTONOMOUS DRIVING USING DEEP NEURAL NETWORKS

    Mayr, Jakob / Giracoglu, Can / Unger, Christian et al. | British Library Conference Proceedings | 2019


    Headlight Range Estimation for Autonomous Driving using Deep Neural Networks

    Mayr, Jakob / Giracoglu, Can / Unger, Christian et al. | IEEE | 2019



    A Cognitive-Based Trajectory Prediction Approach for Autonomous Driving

    Liao, Haicheng / Li, Yongkang / Li, Zhenning et al. | IEEE | 2024