Reliable vessel detection can improve safety and security in maritime environment. Recently, application of Deep Learning (DL)-based detectors have become popular in autonomous vehicles. The aim of this paper is to study how much a pretrained DL model on a domain-specific marine data can improve the performance of the detectors for vessel detection? To this end, we trained state-of-the-art DL-based detectors (Faster R-CNN [1], R-FCN [2] and SSD [3]) using an open source generic object detection COCO dataset [4] and a marine SeaShips dataset [5]. The performance of these detectors are explored based on different feature extractors. Moreover, we investigate the effect of object size on the detection accuracy. To obtain results, we collected a real marine dataset by a sensor system onboard a vessel in the Finnish archipelago. This system is used for developing autonomous vessels, and records data in a range of operation and climatic conditions. The experimental results show that Faster R-CNN with ResNet101 achieves the highest object detection accuracy with mean average precision of 75.2%.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Transfer Learning for Maritime Vessel Detection using Deep Neural Networks


    Beteiligte:


    Erscheinungsdatum :

    19.09.2021


    Format / Umfang :

    472428 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Aerial Maritime Vessel Detection and Identification

    Kulas, Antonella Barisic / Petric, Frano / Bogdan, Stjepan | IEEE | 2025


    MARITIME VESSEL STABILIZER

    TEPPIG JR / WHANG JAMES S | Europäisches Patentamt | 2025

    Freier Zugriff

    Maritime Vessel Stabilizer

    TEPPIG JR WILLIAM M / WHANG JAMES S | Europäisches Patentamt | 2024

    Freier Zugriff

    Maritime Vessel Detection and Tracking under UAV Vision

    Li, YongShuai / Yuan, Haiwen / Wang, Yuan et al. | IEEE | 2022


    Maritime Target Detection Method Based on Deep Learning

    Fu, Huixuan / Li, Yuan / Wang, Yuchao et al. | British Library Conference Proceedings | 2018