Autonomous maritime surveillance and target vessel identification in environments where Global Navigation Satellite Systems (GNSS) are not available is critical for a number of applications such as search and rescue and threat detection. When the target vessel is only described by visual cues and its last known position is not available, unmanned aerial vehicles (UAVs) must rely solely on on-board vision to scan a large search area under strict computational constraints. To address this challenge, we leverage the YOLOv8 object detection model to detect all vessels in the field of view. We then apply feature matching and hue histogram distance analysis to determine whether any detected vessel corresponds to the target. When found, we localize the target using simple geometric principles. We demonstrate the proposed method in real-world experiments during the MBZIRC2023 competition, integrated into a fully autonomous system with GNSS-denied navigation. We also evaluate the impact of perspective on detection accuracy and localization precision and compare it with the oracle approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Aerial Maritime Vessel Detection and Identification


    Beteiligte:


    Erscheinungsdatum :

    14.05.2025


    Format / Umfang :

    3134733 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    MARITIME VESSEL STABILIZER

    TEPPIG JR / WHANG JAMES S | Europäisches Patentamt | 2025

    Freier Zugriff

    Maritime Vessel Stabilizer

    TEPPIG JR WILLIAM M / WHANG JAMES S | Europäisches Patentamt | 2024

    Freier Zugriff

    Maritime Vessel Detection and Tracking under UAV Vision

    Li, YongShuai / Yuan, Haiwen / Wang, Yuan et al. | IEEE | 2022


    Unsupervised Maritime Vessel Re-Identification With Multi-Level Contrastive Learning

    Zhang, Qian / Zhang, Mingxin / Liu, Jinghe et al. | IEEE | 2023


    Maritime Vessel Tank Inspection using Aerial Robots: Experience from the field and dataset release

    Dharmadhikari, Mihir / Khedekar, Nikhil / De Petris, Paolo et al. | ArXiv | 2024

    Freier Zugriff