Intersections are one of the main sources of congestion and hence, it is important to understand traffic behavior at intersections. Particularly, in developing countries with high vehicle density, mixed traffic type, and lane-less driving behavior, it is difficult to distinguish between congested and normal traffic behavior. In this work, we propose a way to understand the traffic state of smaller spatial regions at intersections using traffic graphs. The way these traffic graphs evolve over time reveals different traffic states - a) a congestion is forming (clumping), the congestion is dispersing (unclumping), or c) the traffic is flowing normally (neutral). We train a spatio-temporal deep network to identify these changes. Also, we introduce a large dataset called EyeonTraffic (EoT) containing 3 hours of aerial videos collected at 3 busy intersections in Ahmedabad, India. Our experiments on the EoT dataset show that the traffic graphs can help in correctly identifying congestion-prone behavior in different spatial regions of an intersection.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Defining Traffic States using Spatio-temporal Traffic Graphs


    Beteiligte:


    Erscheinungsdatum :

    20.09.2020


    Format / Umfang :

    2267463 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    TRAFFIC SIGNAL CONTROL BY SPATIO-TEMPORAL EXTENDED SEARCH SPACE OF TRAFFIC STATES

    TUDORAN RADU / BORTOLI STEFANO / AXENIE CRISTIAN et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    Virtualized Traffic: Reconstructing Traffic Flows from Discrete Spatio-Temporal Data

    van den Berg, Jur / Sewall, Jason / Lin, Ming et al. | IEEE | 2009


    Spatio-Temporal AutoEncoder for Traffic Flow Prediction

    Liu, Mingzhe / Zhu, Tongyu / Ye, Junchen et al. | IEEE | 2023


    MLP for Spatio-Temporal Traffic Volume Forecasting

    Dimara, Asimina / Triantafyllidis, Dimitrios / Krinidis, Stelios et al. | IEEE | 2021


    Traffic flow prediction method for traffic flow spatio-temporal data information

    LIU PENG / CHU YUQUAN | Europäisches Patentamt | 2024

    Freier Zugriff