Forecasting traffic flow is an important task in urban areas, and a large number of methods have been proposed for traffic flow prediction. However, most of the existing methods follow a general technical route to aggregate historical information spatially and temporally. In this paper, we propose a different approach for traffic flow prediction. Our major motivation is to more effectively incorporate various intrinsic patterns in real-world traffic flows, such as fixed spatial distributions, topological correlations, and temporal periodicity. Along this line, we propose a novel autoencoder-based traffic flow prediction method, named Spatio-Temporal AutoEncoder (ST-AE). The core of our method is an autoencoder specially designed to learn the intrinsic patterns from traffic flow data, and encode the current traffic flow information into a low-dimensional representation. The prediction is made by simply projecting the current hidden states to the future hidden states, and then reconstructing the future traffic flows with the trained autoencoder. We have conducted extensive experiments on four real-world data sets. Our method outperforms existing methods in several settings, particularly for long-term traffic flow prediction.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Spatio-Temporal AutoEncoder for Traffic Flow Prediction


    Beteiligte:
    Liu, Mingzhe (Autor:in) / Zhu, Tongyu (Autor:in) / Ye, Junchen (Autor:in) / Meng, Qingxin (Autor:in) / Sun, Leilei (Autor:in) / Du, Bowen (Autor:in)


    Erscheinungsdatum :

    01.05.2023


    Format / Umfang :

    1836425 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Traffic flow prediction method for traffic flow spatio-temporal data information

    LIU PENG / CHU YUQUAN | Europäisches Patentamt | 2024

    Freier Zugriff

    Global spatio‐temporal dynamic capturing network‐based traffic flow prediction

    Haoran Sun / Yanling Wei / Xueliang Huang et al. | DOAJ | 2023

    Freier Zugriff

    Global spatio‐temporal dynamic capturing network‐based traffic flow prediction

    Sun, Haoran / Wei, Yanling / Huang, Xueliang et al. | Wiley | 2023

    Freier Zugriff

    Short-term traffic flow prediction method based on spatio-temporal correlation

    QI YONG / XIONG TING / ZHANG WEIBIN et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    MS-Net: Multi-Source Spatio-Temporal Network for Traffic Flow Prediction

    Fang, Shen / Prinet, Veronique / Chang, Jianlong et al. | IEEE | 2022