We present a novel concept, Virtualized Traffic, to reconstruct and visualize continuous traffic flows from discrete spatio-temporal data provided by traffic sensors or generated artificially to enhance a sense of immersion in a dynamic virtual world. Given the positions of each car at two recorded locations on a highway and the corresponding time instances, our approach can reconstruct the traffic flows (i.e. the dynamic motions of multiple cars over time) in between the two locations along the highway for immersive visualization of virtual cities or other environments. Our algorithm is applicable to high-density traffic on highways with an arbitrary number of lanes and takes into account the geometric, kinematic, and dynamic constraints on the cars. Our method reconstructs the car motion that automatically minimizes the number of lane changes, respects safety distance to other cars, and computes the acceleration necessary to obtain a smooth traffic flow subject to the given constraints. Furthermore, our framework can process a continuous stream of input data in real time, enabling the users to view virtualized traffic events in a virtual world as they occur.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Virtualized Traffic: Reconstructing Traffic Flows from Discrete Spatio-Temporal Data


    Beteiligte:
    van den Berg, Jur (Autor:in) / Sewall, Jason (Autor:in) / Lin, Ming (Autor:in) / Manocha, Dinesh (Autor:in)


    Erscheinungsdatum :

    01.03.2009


    Format / Umfang :

    876925 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Defining Traffic States using Spatio-temporal Traffic Graphs

    Roy, Debaditya / Kumar, K. Naveen / Mohan, C. Krishna | IEEE | 2020


    Traffic flow prediction method for traffic flow spatio-temporal data information

    LIU PENG / CHU YUQUAN | Europäisches Patentamt | 2024

    Freier Zugriff

    Making Sense of ANPR Data via Intelligent Spatio-temporal Disaggregation of Traffic Flows

    Dhont, Michiel / Tsiporkova, Elena / Gonzalez-Deleito, Nicolas et al. | IEEE | 2022


    Mining spatio-temporal patterns of congested traffic in urban areas from traffic sensor data

    Inoue, Ryo / Miyashita, Akihisa / Sugita, Masatoshi | IEEE | 2016


    Deep Representation of Imbalanced Spatio-temporal Traffic Flow Data for Traffic Accident Detection

    Mehrannia, Pouya / Bagi, Shayan Shirahmad Gale / Moshiri, Behzad et al. | ArXiv | 2021

    Freier Zugriff