The knowledge of the precise 3D position of a target in tracking applications is a fundamental requirement. The lack of a low-cost single sensor capable of providing the three-dimensional position (of a target) makes it necessary to use complementary sensors together. This research presents a Local Positioning System (LPS) for outdoor scenarios, based on a data fusion approach for unmodified UAV tracking, combining a vision sensor and mmWave radar. The proposed solution takes advantage of the radar's depth observation ability and the potential of a neural network for image processing. We have evaluated five data association approaches for radar data cluttered to get a reliable set of radar observations. The results demonstrated that the estimated target position is close to an exogenous ground truth obtained from a Visual Inertial Odometry (VIO) algorithm executed onboard the target UAV. Moreover, the developed system's architecture is prepared to be scalable, allowing the addition of other observation stations. It will increase the accuracy of the estimation and extend the actuation area. To the best of our knowledge, this is the first work that uses a mmWave radar combined with a camera and a machine learning algorithm to track a UAV in an outdoor scenario.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Data Fusion Approach for Unmodified UAV Tracking with Vision and mmWave Radar


    Beteiligte:
    Amaral, Guilherme (Autor:in) / Martins, Joao J. (Autor:in) / Martins, Pedro (Autor:in) / Dias, Andre (Autor:in) / Almeida, Jose (Autor:in) / Silva, Eduardo (Autor:in)


    Erscheinungsdatum :

    14.05.2025


    Format / Umfang :

    5288154 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A DNN-LSTM based Target Tracking Approach using mmWave Radar and Camera Sensor Fusion

    Sengupta, Arindam / Jin, Feng / Cao, Siyang | IEEE | 2019



    Object Tracking System With Radar/Vision Fusion For Automated Vehicles

    SCHIFFMANN JAN K | Europäisches Patentamt | 2017

    Freier Zugriff

    Vision meets mmWave Radar: 3D Object Perception Benchmark for Autonomous Driving

    Wang, Yizhou / Cheng, Jen-Hao / Huang, Jui-Te et al. | IEEE | 2024


    Object tracking system with radar/vision fusion for automated vehicles

    SCHIFFMANN JAN K | Europäisches Patentamt | 2020

    Freier Zugriff