A new sensor fusion study for monocular camera and mmWave radar using deep neural network and LSTMs is presented. The proposed study includes a decision framework to produce reliable output when either sensor fails. Experiment results to demonstrate single sensor uncertainty and the proposed method’s advantages are also presented.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A DNN-LSTM based Target Tracking Approach using mmWave Radar and Camera Sensor Fusion


    Beteiligte:
    Sengupta, Arindam (Autor:in) / Jin, Feng (Autor:in) / Cao, Siyang (Autor:in)


    Erscheinungsdatum :

    01.07.2019


    Format / Umfang :

    1224793 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Traffic Incident Detection Based on mmWave Radar and Improvement Using Fusion with Camera

    Zhimin Tao / Yanbing Li / Pengcheng Wang et al. | DOAJ | 2022

    Freier Zugriff

    Data Fusion Approach for Unmodified UAV Tracking with Vision and mmWave Radar

    Amaral, Guilherme / Martins, Joao J. / Martins, Pedro et al. | IEEE | 2025


    Target Tracking and Fusion Using Imaging Sensor and Ground Based Radar Data

    Naidu, Parthsarathy / Girija, G / Raol, Jitendra | AIAA | 2005


    Study on Target Tracking Based on Vision and Radar Sensor Fusion

    Wu, Xian / Ren, Jing / Wu, Yujun et al. | British Library Conference Proceedings | 2018