Extended object tracking methods are often based on the assumption that the measurements are uniformly distributed on the target object. However, this assumption is often invalid for applications using automotive radar or lidar data. Instead, there is a bias towards the side of the object that is visible to the sensor. To handle this challenge, we employ a Gaussian Mixture (GM) density to model a more detailed measurement distribution across the surface and extend a recent Kalman filter based elliptic object tracker called MEM-EKF* to get a closed-form solution for the measurement update. An evaluation of the proposed approach compared with classic elliptic trackers and a recent truncation-based approach is conducted on simulated data.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Kalman Filter Based Extended Object Tracking with a Gaussian Mixture Spatial Distribution Model


    Beteiligte:
    Thormann, Kolja (Autor:in) / Yang, Shishan (Autor:in) / Baum, Marcus (Autor:in)


    Erscheinungsdatum :

    11.07.2021


    Format / Umfang :

    1527989 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Vehicle detection and tracking using Gaussian Mixture Model and Kalman Filter

    Indrabayu / Bakti, Rizki Yusliana / Areni, Intan Sari et al. | IEEE | 2016



    Extended Target Tracking using a Gaussian-Mixture PHD Filter

    Granstrom, K. / Lundquist, C. / Orguner, O. | IEEE | 2012


    Vehicle Speed Estimation Using Gaussian Mixture Model and Kalman Filter

    Tayeb, Ahmed Abdulwahab / Aldhaheri, Rabah Wasel / Hanif, Muhammad Shehzad | BASE | 2021

    Freier Zugriff

    Maneuvering target tracking using extended Kalman filter

    Cortina, E. / Otero, D. / D'Attellis, C.E. | IEEE | 1991