This paper presents a Gaussian-mixture (GM) implementation of the probability hypothesis density (PHD) filter for tracking extended targets. The exact filter requires processing of all possible measurement set partitions, which is generally infeasible to implement. A method is proposed for limiting the number of considered partitions and possible alternatives are discussed. The implementation is used on simulated data and in experiments with real laser data, and the advantage of the filter is illustrated. Suitable remedies are given to handle spatially close targets and target occlusion.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Extended Target Tracking using a Gaussian-Mixture PHD Filter


    Beteiligte:
    Granstrom, K. (Autor:in) / Lundquist, C. (Autor:in) / Orguner, O. (Autor:in)


    Erscheinungsdatum :

    01.10.2012


    Format / Umfang :

    4369227 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Corrections on: “Extended Target Tracking Using a Gaussian-Mixture PHD Filter”

    Granstrom, Karl / Orguner, Umut / Mahler, Ronald et al. | IEEE | 2017

    Freier Zugriff

    A Gaussian Mixture Extended-Target Multi-Bernoulli Filter

    Zhang, G. / Lian, F. / Han, C. et al. | British Library Online Contents | 2014




    Maneuvering target tracking using extended Kalman filter

    Cortina, E. / Otero, D. / D'Attellis, C.E. | IEEE | 1991