Nowadays road accident in Bangladesh is a buzzword due to its lack of carefulness of the driver of the vehicle where some parameter exists. The traffic safety of the roadway is an essential concern not only for transportation governing agencies but also for citizens of our country. For safe driving suggestions, the important thing is to find the variables that are tensed to relate to the fatal accidents that are occurring often. In this paper, we create a model using a machine learning approach on the countrywide traffic accident dataset of Bangladesh as an aim to address this problem. The model also helps out to find the diversity of the data by grouping similar objects together to find the accident-prone areas in the country concerning different accident factors as well as detects the cooperation between these factors and causalities.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Accidental Prone Area Detection in Bangladesh using Machine Learning Model


    Beteiligte:


    Erscheinungsdatum :

    15.09.2020


    Format / Umfang :

    295541 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    ACCIDENTAL FIRE DETECTION SYSTEM

    HINOSHITA MIWA / KATO TAKANORI / YOKOI TOSHITAKA | Europäisches Patentamt | 2023

    Freier Zugriff

    DEVICE FOR MONITORING AREA PRONE TO FREEZING AND RISK OF SLIPPAGE USING DEEP LEARNING MODEL, AND METHOD THEREFOR

    JI TAEK SOO / KIM JIN SUL / KIM CHI HUN et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    CALCULATION OF THE AREA OF THE RIVER ACCIDENTAL POLLUTION

    A. N. Pshinko / N. N. Beliaiev / L. V. Pokutnieva | DOAJ | 2010

    Freier Zugriff

    Lift car accidental movement detection system

    TIAN MAOJUN / SHANG QINGYANG / JIN TING et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    IOT-Based Accidental Detection System (ADS) Using Raspberry Pi

    Reddy, Ajitesh / Das, Arunika / Raut, Yudhishthir et al. | IEEE | 2023