Traditional palm vein recognition is susceptible to temperature variations, resulting in low success rates. To address this issue, we propose a palm vein recognition method based on Long Short-Term Memory (LSTM). Initially, palm vein image data and temperature information are collected over a period. A Fully Convolutional Network (FCN) model is trained using manually annotated palm vein images. Features vectors of the annotated palm vein images are then computed through a Convolutional Neural Network (CNN), and an LSTM-CNN model for palm vein recognition is trained using LSTM. Finally, the to-be-recognized palm vein images and temperature information are obtained through sensors. These are matched with the corresponding temperature-based LSTM-CNN model and feature vector templates. If the matching score exceeds a certain threshold, the recognition is successful; otherwise, it fails. Experimental results show that under a temperature range of -20 to 40 degrees Celsius, and with approximately 12,000 palm vein image data and temperature information collected from 10 individuals for training, complete and accurate recognition of the palm vein information of the 10 individuals can be achieved. This method overcomes the impact of temperature variations on the accuracy of palm vein recognition, meeting the application needs of real-world scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Palm Vein Recognition Method Based on LSTM-CNN


    Beteiligte:
    Wang, Yenan (Autor:in) / Wu, Weiwei (Autor:in) / Yao, Junqi (Autor:in) / Li, Dezheng (Autor:in)


    Erscheinungsdatum :

    11.10.2023


    Format / Umfang :

    2624919 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Overcharging gun head based on vein recognition

    LI ZHIBO / MIN ZHI / CHEN CHANGJIE et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Seat memory adjusting method based on finger vein recognition

    ZHAO ZHIDING / ZHOU HONGTAO / KE JIANFEI | Europäisches Patentamt | 2022

    Freier Zugriff

    LSTM LSTM-based future threat prediction method and apparatus

    PARK YOUNG TACK / JEON MYUNG JOONG / KIM MIN SUNG et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Vehicle lane changing intention recognition method based on TCN-LSTM network

    XIANG QIAOJUN / ZHOU WEI / YUAN RENTENG et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Motor vehicle control system based on vein recognition

    XU WEI / WU SONG | Europäisches Patentamt | 2020

    Freier Zugriff