Recently, Ko et al. (2022) proposed a high-speed railway positioning scheme based on an improved Kalman filter using 5G NR signals. Although the proposal was promising, our research and analysis have revealed that the method has serious design flaws in the proposed filtering principles, rendering the algorithm infeasible. Specifically, the flaws are related to the computation and usability of high-order terms in the prediction error after Taylor expansion and prediction error derivation.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Comments on “High-Speed Train Positioning Using Deep Kalman Filter With 5G NR Signals”


    Beteiligte:
    Wen, Tao (Autor:in) / Jiang, Hao (Autor:in) / Roberts, Clive (Autor:in)


    Erscheinungsdatum :

    01.02.2024


    Format / Umfang :

    295212 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    High-Speed Train Positioning Using Deep Kalman Filter With 5G NR Signals

    Ko, Kyeongjun / Byun, Ilmu / Ahn, Woojin et al. | IEEE | 2022



    A Strong Wind Warning Method for High Speed Train Using Kalman Filter

    Li, Yuntao / Huang, Hong / Wang, Hongye et al. | IEEE | 2012


    High speed train optimal adhesion control method based on a Cubature Kalman filter

    Tang, Jieping / Balogun Alanamu, Bolaji / Wang, Song et al. | SPIE | 2024