The safe running of high-speed trains depends on the adhesion between the wheel and the rail. This paper suggests an optimal adhesion control for high-speed trains based on the use of the CKF (Cubature Kalman Filter) in order to completely exploit the adhesion between the wheel and rail and attain the ideal adhesion condition. The method allows for the approximative estimate of train speed using CKF and is based on the wheel-rail dynamics and high-speed train adhesion model. The extremum search algorithm without steady-state oscillation is used to build an optimization adhesion control, which eventually directs the train to run as closely as feasible to the peak adhesion point, overcoming the effects of external interference and estimating errors on the system. Finally, MATLAB/Simulink is used to create a simulation model of the adhesion control for the traction transmission of the CRH2 high-speed train. With an average adhesion utilization rate over 95%, the simulation results demonstrate the viability of the suggested approach, ensuring the effective and secure running of high-speed trains.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    High speed train optimal adhesion control method based on a Cubature Kalman filter


    Beteiligte:
    Mikusova, Miroslava (Herausgeber:in) / Tang, Jieping (Autor:in) / Balogun Alanamu, Bolaji (Autor:in) / Wang, Song (Autor:in) / Huang, Jingchun (Autor:in) / Qiu, Zhongcai (Autor:in)

    Kongress:

    International Conference on Smart Transportation and City Engineering (STCE 2023) ; 2023 ; Chongqing, China


    Erschienen in:

    Proc. SPIE ; 13018


    Erscheinungsdatum :

    14.02.2024





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A seventh‐degree cubature kalman filter

    Meng, Dong / Miao, Lingjuan / Shao, Haijun et al. | British Library Online Contents | 2018


    Spacecraft attitude estimation based on matrix Kalman filter and recursive cubature Kalman filter

    Zhang, Tao / Xu, Xiang / Wang, Zhicheng | SAGE Publications | 2018



    Cubature Kalman Filter based point set registration for SLAM

    Liang Li / Ming Yang / Chunxiang Wang et al. | IEEE | 2016


    On a new higher degree Cubature Kalman filter

    Huang, Xiangyuan / Tang, Xiaqing / Wu, Meng | IEEE | 2014