Ego-localization is one of the most critical functions in autonomous vehicles. This paper presents a novel WiFi-based localization system for autonomous driving designed to augment onboard localization systems during critical failures or complement GNSS-denied scenarios such as parking lots. The system leverages the existing WiFi network infrastructure to provide global localization using a WiFi interface and a publicly available WiFi RSS and AP database created through survey efforts with conventional mobile devices. An LSTM-based architecture is trained to estimate the device’s position from the history of WiFi RSS, leveraging temporal correlations in the sequences. The results suggest that this system is a viable alternative even when no strong requirements are set for the quality of the GNSS measurements in the surveying phase.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    WiFi-based Localization for Fail-Aware Autonomous Driving in Urban Scenarios




    Erscheinungsdatum :

    04.06.2023


    Format / Umfang :

    3012699 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Fail Safe Process of Vehicle Localization for Reliability Improvement of LV3 Autonomous Driving

    Seo, Kyungil / Lee, Jaehoon / Lee, Je-young et al. | Springer Verlag | 2021


    Intent-Aware Autonomous Driving: A Case Study on Highway Merging Scenarios

    Mahajan, Nishtha / Zhang, Qi | ArXiv | 2023

    Freier Zugriff


    FAIL SAFE OPERATIONAL STEERING SYSTEM FOR AUTONOMOUS DRIVING

    Europäisches Patentamt | 2017

    Freier Zugriff