In this paper, an improved intersection detection method is proposed by applying the VCS-based algorithm on the registered scans instead of the single scan. Both the registration and intersection detection approach are independent on Global Positioning System (GPS), Geographic Information System (GIS), Inertial Navigation System (INS) or other auxiliaries which have been extensively used in autonomous navigation. The novel registration method named VeloRegistration addresses the data registration problem and moving object detection simultaneously by introducing a tracking-classification operator into iterative matching process. The accurate and massive information generated by VeloRegistration enables us to cope with much more complicated intersection scenarios, especially there are dead zones caused by severe occlusion. Experimental validation including three real world data sets acquired in Wuhan, China substantiate the effectiveness and robustness of our approach in challenging urban scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    VeloRegistration based intersection detection for autonomous driving in challenging urban scenarios


    Beteiligte:
    Zhu, Quanwen (Autor:in) / Mao, Qingzhou (Autor:in) / Chen, Long (Autor:in) / Li, Ming (Autor:in) / Li, Qingquan (Autor:in)


    Erscheinungsdatum :

    01.09.2012


    Format / Umfang :

    1517008 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Road curb and lanes detection for autonomous driving on urban scenarios

    Fernandez, C. / Izquierdo, R. / Llorca, D. F. et al. | IEEE | 2014



    Intersection detection and recognition for autonomous urban driving using a virtual cylindrical scanner

    Li, Qingquan / Chen, Long / Zhu, Quanwen et al. | Wiley | 2014

    Freier Zugriff

    Intersection detection and recognition for autonomous urban driving using a virtual cylindrical scanner

    Li, Qingquan / Chen, Long / Zhu, Quanwen et al. | IET | 2014

    Freier Zugriff