Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Bayesian Mixture Model Approach to Anomaly Detection with Application to Wind Tunnel Experiments


    Beteiligte:

    Kongress:

    AIAA Scitech 2021 Forum



    Erscheinungsdatum :

    01.01.2021




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    A BAYESIAN MIXTURE MODEL APPROACH TO ANOMALY DETECTION WITH APPLICATION TO WIND TUNNEL EXPERIMENTS

    Merkes, Sierra N. / Leman, Scotland / Smith, Eric et al. | TIBKAT | 2021


    Anomaly Detection in Wind Tunnel Experiments by Principal Component Analysis

    Defreitas, Aaron / Alexander, William N. / Devenport, William J. et al. | AIAA | 2019


    Anomaly Detection in Wind Tunnel Experiments by Principal Component Analysis

    Defreitas, Aaron / Nathan Alexander, W. / Devenport, William et al. | AIAA | 2022


    Improved Anomaly Detection in Experimental Wind Tunnel Data using PCA

    Defreitas, Aaron / Alexander, William N. / Devenport, William J. et al. | AIAA | 2020


    IMPROVED ANOMALY DETECTION IN EXPERIMENTAL WIND TUNNEL DATA USING PCA

    Defreitas, Aaron / Alexander, William N. / Devenport, William J. et al. | TIBKAT | 2020