Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Anomaly Detection in Wind Tunnel Experiments by Principal Component Analysis


    Beteiligte:

    Kongress:

    AIAA Scitech 2019 Forum



    Erscheinungsdatum :

    01.01.2019




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Anomaly Detection in Wind Tunnel Experiments by Principal Component Analysis

    Defreitas, Aaron / Nathan Alexander, W. / Devenport, William et al. | AIAA | 2022


    Wind Tunnel Test of UAV Fault Detection Using Principal Component Based Aerodynamic Model

    Ruangwiset, A. / Suwantragul, B. | British Library Conference Proceedings | 2008


    A BAYESIAN MIXTURE MODEL APPROACH TO ANOMALY DETECTION WITH APPLICATION TO WIND TUNNEL EXPERIMENTS

    Merkes, Sierra N. / Leman, Scotland / Smith, Eric et al. | TIBKAT | 2021


    A Bayesian Mixture Model Approach to Anomaly Detection with Application to Wind Tunnel Experiments

    Merkes, Sierra N. / Leman, Scotland / Smith, Eric et al. | AIAA | 2021


    Improved Anomaly Detection in Experimental Wind Tunnel Data using PCA

    Defreitas, Aaron / Alexander, William N. / Devenport, William J. et al. | AIAA | 2020