Detecting drowsiness in drivers while driving is extremely important to avoid possible accidents and reduce the fatality rate due to drivers sleeping at the wheel. A real‐time alert generation when the driver might possibly go into sleepy state is essential to safeguard any unwarranted incidents. Wearable sensors to monitor vehicle movement and camera‐based systems to monitor driver behaviour are commonly used to detect driver drowsiness. Due to the fact that electroencephalogram (EEG) signals have the ability to monitor the mood of humans and are easily obtainable, many different EEG‐based drowsiness detection systems have been proposed to date. In this study, a novel deep learning architecture based on a convolutional neural network (CNN) is proposed for automated drowsiness detection using a single‐channel EEG signal. To improve the generalization performance of the proposed method, subject‐wise, cross‐subject‐wise, and combined‐subjects‐wise validations have been employed. The whole of the work is carried over pre‐recorded sleep state EEG data obtained from benchmarked dataset. The experimental results show a superior detection capability compared to the existing state–of–the–art drowsiness detection methods using single‐channel EEG signals.


    Access

    Download


    Export, share and cite



    Title :

    Automated classification system for drowsiness detection using convolutional neural network and electroencephalogram



    Published in:

    Publication date :

    2021-04-01


    Size :

    11 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Automated classification system for drowsiness detection using convolutional neural network and electroencephalogram

    Venkata Phanikrishna Balam / Venkata Udaya Sameer / Suchismitha Chinara | DOAJ | 2021

    Free access

    Drowsiness Prevention System and Method Using Electroencephalogram

    KIM JI YEON / AHN SOON WON | European Patent Office | 2018

    Free access

    Automated Driver Drowsiness Detection from Single-Channel EEG Signals Using Convolutional Neural Networks and Transfer Learning

    Ghadami, Ali / Mohammadzadeh, Mohammad / Taghimohammadi, Mohammadreza et al. | IEEE | 2022


    Driver Drowsiness Detection using Convoluted Neural Networks

    Antony, Nihal / KR, Rohit / Patel, Shreya et al. | IEEE | 2019


    Drowsiness Detection System

    CRONJE JACO / HOUGH JOHANN EPHRAIM | European Patent Office | 2021

    Free access