Structural number (SN) represents the structural capacity of a flexible pavement system to sustain anticipated traffic and is among the structural indices most commonly used by pavement design engineers in the U.S. Effective structural number (SNeff) is an indicator of structural capacity of in-service pavement sections and is conventionally estimated from nondestructive testing (NDT) device data such as falling weight deflectometers (FWDs) using methods such as suggested by AASHTO. In addition to pavement design, structural condition is a critical input for the selection of maintenance and rehabilitation strategies in pavement management system (PMS) application. However, use of SN in network level application has not been practical because of limitations of FWD such as stop-and-go operation, lane closures, and low testing frequency. The traffic speed deflectometer (TSD), a continuous deflection device, has recently been gaining worldwide application as a reliable NDT device for network level PMS applications. The objective of this study is to develop a practical approach to compute and utilize SN of in-service flexible pavements from TSD data for network level PMS applications. The study is based on the fundamental that, for the same pavement, SNeff from the TSD using the proposed method should be in good agreement with SNeff from the FWD using AASHTO method. The developed method was field validated with TSD and FWD data collected at in-service pavement sections. In addition, the use of structural number ratio, defined as a ratio of SNeff to required SN, in network level prioritization of structural capacity improvements was illustrated.


    Access

    Download

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Pavement Structural Capacity from Traffic Speed Deflectometer for Network Level Pavement Management System Application


    Additional title:

    Transportation Research Record: Journal of the Transportation Research Board




    Publication date :

    2019-01-01




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English