Unplanned events present significant challenges for operations and management in metro systems. Short-term ridership prediction can help agencies to better design contingency strategies under unplanned events. Though many short-term prediction methods have been proposed in the literature, most studies focused on typical situations or planned events. The study develops methods for the short-term metro ridership prediction under unplanned events. It explores event impact representation mechanisms and deals with the imbalanced data training problem in building the prediction model under unplanned events. Typical machine learning and deep learning methods are developed for exploration. A large-scale automatic fare collection (AFC) dataset and event record data for a heavily used metro system are used for empirical studies. The analysis found that the same type of unplanned event shares a similar and consistent demand change pattern (with respect to the demand under typical situations) at the station level. The synthetic minority oversampling technique (SMOTE) can enrich the ridership observations under unplanned events and generate a balanced dataset for model training. Given the occurrence of unplanned events, the results show that a combination of demand change ratio and the SMOTE oversampling technique enables the prediction models to learn the impact of unplanned events and improve the prediction accuracy under unplanned events. However, the oversampling methods (i.e., SMOTE and replication) slightly deteriorate the prediction accuracy for ridership under normal conditions. The findings provide insights into mechanisms for disruption impact representation and oversampling imbalanced data in model training, and guide the development of models for short-term prediction under unplanned events.


    Access

    Download

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Short-Term Metro Ridership Prediction During Unplanned Events


    Additional title:

    Transportation Research Record: Journal of the Transportation Research Board


    Contributors:


    Publication date :

    2021-09-09




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Forecasting of Short-Term Metro Ridership with Support Vector Machine Online Model

    Xuemei Wang / Ning Zhang / Yunlong Zhang et al. | DOAJ | 2018

    Free access

    Initiatives boost metro ridership and revenue

    Anderson, Paul | IuD Bahn | 2005


    Study of Distribution of Weekly Metro Ridership of Xi'an Metro

    Tao, Si-ran / Chen, Kuan-min / Ma, Chao-qun | ASCE | 2014


    Does Transit-Oriented Development Affect Metro Ridership?

    Lin, Jen-Jia / Shin, Ting-Yu | Transportation Research Record | 2008