It was verified that finite-element modeling could be successfully used to analyze concrete pavements with partial-depth cracks. An existing finite-element program, ILLI-SLAB, was modified (ILSL97) to allow for partial-depth crack analysis. To model a partial-depth crack, a special line spring element was added to the finite-element code. The line spring elements mimic the behavior of a crack by acting as a rotational hinge between two continuous slabs. By using available fracture mechanics techniques, a relationship was derived between the amount of moment load transfer across a crack and the crack depth. This analytical solution was then used to formulate the element stiffness matrix for the line spring element. The deflections predicted by the new finite-element program are correct, but the stresses in the vicinity of the crack tip needed to be corrected to match the stress singularity zone in front of cracks. Several example problems were used to verify the proposed finite-element model, and an example of a typical highway loading condition was analyzed.


    Access

    Download

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Finite-Element Analysis of Portland Cement Concrete Pavements with Cracks


    Additional title:

    Transportation Research Record


    Contributors:


    Publication date :

    1997-01-01




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English