Optimal deployment of limited emergency resources in a large area is of interest to public agencies at all levels. In this paper, the problem of allocating limited emergency service vehicles including fire engines, fire trucks, and ambulances among a set of candidate stations is formulated as a mixed integer linear programming model, in which the objective is to maximize the service coverage of critical transportation infrastructure (CTI). On the basis of this model, the effects of demand at CTI nodes and of transportation network performance on the optimal coverage of CTI are studied. In addition, given a fixed total budget, the most efficient distribution of investment among the three types of emergency service vehicles is identified. To cope with the uncertainty involved in some of the model parameters such as traffic network performance, formulations based on various risk preferences are proposed. The concept of regret is applied to evaluate the robustness of proposed resource allocation strategies. The applicability of the proposed methodologies to high-density metropolitan areas is demonstrated through a case study that uses data from current practice in Singapore.


    Access

    Download

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Optimal Allocation of Multiple Emergency Service Resources for Protection of Critical Transportation Infrastructure


    Additional title:

    Transportation Research Record: Journal of the Transportation Research Board


    Contributors:


    Publication date :

    2007-01-01




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English