Reflective cracking is frequently reported as the most common distress affecting resurfaced pavements. An asphalt rubber membrane interlayer (ARMI) approach has been traditionally used in Florida to mitigate reflective cracking. However, recent field evidence has raised doubts about the effectiveness of the ARMI when placed near the surface, indicating questionable benefits to reflective cracking and increased instability rutting potential. The main purpose of this research was to develop guidelines for an effective alternative to the ARMI for mitigation of near-surface reflective cracking in overlays on asphalt pavement. Fourteen interlayer mixtures, covering three aggregate types widely used in Florida, and two nominal maximum aggregate sizes (NMAS) were designed according to key characteristics identified for mitigation of reflective cracking, that is, sufficient gradation coarseness and high asphalt content. The dominant aggregate size range—interstitial component (DASR-IC) model was used for the design of all mixture gradations. A composite specimen interface cracking (CSIC) test was employed to evaluate reflective cracking performance of interlayer systems. In addition, asphalt pavement analyzer (APA) tests were performed to determine whether the interlayer mixtures had sufficient rutting resistance. The results indicated that interlayer mixtures designed with lower compaction effort, reduced design air voids, and coarser gradation led to more cost-effective fracture-tolerant and shear-resistant (FTSR) interlayers. Therefore, preliminary design guidelines including minimum effective film thickness and maximum DASR porosity requirements were proposed for 9.5-mm NMAS (35 µm and 50%) and 4.75-mm NMAS FTSR mixtures (20 µm and 60%) to mitigate near-surface reflective cracking.


    Access

    Download

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Fracture-Tolerant and Shear-Resistant Interlayers for Mitigation of Reflective Cracking


    Additional title:

    Transportation Research Record


    Contributors:


    Publication date :

    2019-05-05




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English