Several approaches have been developed to cope with the limits of conventional origin-destination (O-D) trip matrix collecting methods. One is the bilevel programming method, which uses a sensitivity analysis-based (SAB) algorithm to solve a generalized least-squares problem. However, the SAB algorithm has revealed a critical shortcoming when there is a significant difference between the target O-D matrix and the true O-D matrix. This problem stems from the heavy dependence of the SAB algorithm on historical O-D information. Such dependence may lead to a state in which the O-D estimator cannot produce a correct solution, especially when travel patterns are dramatically changed. To avoid the problem of dependency, a robust and stable method is required. A solution method is developed with a genetic algorithm, which is widely used in optimization problems to obtain a global solution. From the results of numerical examples, the proposed algorithm is superior to the SAB algorithm regardless of travel patterns.


    Access

    Download

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Origin-Destination Matrices Estimated with a Genetic Algorithm from Link Traffic Counts


    Additional title:

    Transportation Research Record: Journal of the Transportation Research Board


    Contributors:


    Publication date :

    2001-01-01




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English