Pavement distress or pothole mapping is important to public agencies responsible for maintaining roadways. The efficient capture of 3D point cloud data using mapping systems equipped with LiDAR eliminates the time-consuming and labor-intensive manual classification and quantity estimates. This paper proposes a methodology to map potholes along the road surface using ultra-high accuracy LiDAR units onboard a wheel-based mobile mapping system. LiDAR point clouds are processed to detect and report the location and severity of potholes by identifying the below-road 3D points pertaining to potholes, along with their depths. The surface area and volume of each detected pothole is also estimated along with the volume of its minimum bounding box to serve as an aide to choose the ideal method of repair as well as to estimate the cost of repair. The proposed approach was tested on a 10 mi-long segment on a U.S. Highway and it is observed to accurately detect potholes with varying severity and different causes. A sample of potholes detected in a 1 mi segment has been reported in the experimental results of this paper. The point clouds generated using the system are observed to have a single-track relative accuracy of less than ±1 cm and a multi-track relative accuracy of ±1–2 cm, which has been verified through comparing point clouds captured by different sensors from different tracks.


    Access

    Download

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Pothole Mapping and Patching Quantity Estimates using LiDAR-Based Mobile Mapping Systems


    Additional title:

    Transportation Research Record


    Contributors:


    Publication date :

    2020-07-07




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English