In this work, we apply iterative learning method to address the traffic density control problem in a macroscopic level freeway environment with ramp metering. The second-order traffic flow model is firstly formulated. Then traffic density is selected as the control variable in place of traffic occupancy. Based on the traffic flow model and in conjunction with nonlinear feedback theory, an iterative learning based traffic density controller is designed. Finally, the iterative learning based feedback controller is simulated in Matlab software. Simulation results show that this method has good dynamic and steady-state performance, and can achieve an almost perfect tracking performance.
An Iterative Learning Approach for Freeway Traffic Density Control
Advanced Materials Research ; 317-319 ; 1394-1397
2011-08-16
4 pages
Article (Journal)
Electronic Resource
English
Freeway Traffic Density Control Using Iterative Learning Control Approach
British Library Conference Proceedings | 2003
|An iterative learning approach for density control of freeway traffic flow via ramp metering
Online Contents | 2008
|An iterative learning approach for density control of freeway traffic flow via ramp metering
Online Contents | 2008
|