Modifications to an existing three-dimensional, implicit, upwind Euler/Navier-Stokes code (CFL3D Version 2.1) for the aeroelastic analysis of wings are described. These modifications, which were previously added to CFL3D Version 1.0, include the incorporation of a deforming mesh algorithm and the addition of the structural equations of motion for their simultaneous time-integration with the governing flow equations. The paper gives a brief description of these modifications and presents unsteady calculations which check the modifications to the code. Euler flutter results for an isolated 45 deg swept-back wing are compared with experimental data for seven freestream Mach numbers which define the flutter boundary over a range of Mach number from 0.499 to 1.14. These comparisons show good agreement in flutter characteristics for freestream Mach numbers below unity. For freestream Mach numbers above unity, the computed aeroelastic results predict a premature rise in the flutter boundary as compared with the experimental boundary. steady and unsteady contours of surface Mach number and pressure and included to illustrate the basic flow characteristics of the time-marching flutter calculations and to aid in identifying possible causes for the premature rise in the computational flutter boundary.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Wing flutter boundary prediction using unsteady Euler aerodynamic method


    Additional title:

    Die Voraussage der Grenzen der Flatterschwingungen bei Tragflächen mittels instationärer aerodynamischer Euler Methode


    Contributors:


    Publication date :

    1993


    Size :

    11 Seiten, 10 Bilder, 1 Tabelle, 24 Quellen


    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English