A balanced program involving both the National Aeronautics and Space Adminstration (NASA) and industry has been structured to carry out a Supersonic Laminar Flow Control (SLFC) program. The program utilizes a balanced mix of computational efforts, ground facility experiments, and flight testing. Advances Computational Fluid Dynamics (CFD) methods and boundary-layer stability codes offer the opportunity to analyze flow phenomena to a greater level of accuracy than in the past, yet the computational prediction and design tools need considerable development and validation for the highly three-dimensional supersonic flow conditions of the F-16XL and the High Speed Civil Transport (HSCT). Swept-wing model experiments are underway in a low-disturbance supersonic tunnel to provide data on leading-edge transition physics and flow mechanisms. On-going F-16XL-1 flight tests are obtaining laminar-flow data that will reduce the risk for the NASA experiment on the F-16XL-2. Precursor flight tests on the F-16XS-2 will provide attachment-line design criteria, code calibration data, and an improved understanding of the flow field over the wing that will add confidence to the design process for the suction panel. Improved measurements systems are being developed to meet the challenging measurement requirements for this supersonic flight experiment. Flight testing of the active suction panel on the F-16XL-2 will be conducted in 1995.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Application of laminar flow control to the high flow control to the high speed civil transport - the NASA supersonic laminar flow control program


    Additional title:

    Anwendung des Laminar-Strömungskontrolle bei der Hochgeschwindigkeitsluftfahrt - das NASA Laminar-Strömungsregelungsprogramm für den Überschallbereich


    Contributors:

    Published in:

    Publication date :

    1991


    Size :

    12 Seiten, 11 Bilder, 11 Quellen



    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English