This paper discusses the use of neural networks as a management tool for the maintenance of jointed concrete pavements. The backpropagation algorithm is applied to model the condition rating scheme adopted by Oregon State Department of Transportation. The backpropagation technique was successful in accurately capturing the nonlinear characteristics of the condition rating model. A large training set of actual pavement condition cases was used to train the network. The training was terminated when the average training error reached 0.022. A set of 6802 cases was used to test the generalization ability of the system. The trained network was able to accurately determine the correct condition ratings with the average testing error of 0.024. Finally, a statistical hypothesis test was conducted to demonstrate the system's fault-tolerance and generalization properties.
Use of neural networks for condition rating of jointed concrete pavements
Die Verwendung neuronaler Netze zur Bedingungsabschätzung von verbundenen Betonstraßen
Advances in Engineering Software ; 23 , 3 ; 133-141
1995
9 Seiten, 5 Bilder, 5 Tabellen, 11 Quellen
Article (Journal)
English
neuronales Netz , künstliche Intelligenz , Modelluntersuchung , mathematisches Modell , mathematisches Verfahren , fehlertolerantes System , Systemarchitektur , Statistik , Systemeigenschaft , Randbedingung , lernender Automat , Algorithmus , Versuchsanlage , Versuchsergebnis , Versuchsmodell , Verkehrswesen , Netzwerkmanagement (Datennetz) , Fehleranalyse , Fehlerdiagnose , Fehlererkennung , Fehlergrenze , Fehlerkorrektur , Fehlermodell , Fehlerschätzung , Schätzverfahren
Optimizing jointed concrete pavements
British Library Online Contents | 2008
Nonlinear Analysis of Jointed Concrete Pavements
Transportation Research Record | 1998
|Foundation Modeling for Jointed Concrete Pavements
Transportation Research Record | 2000
|Nonlinear Analysis of Jointed Concrete Pavements
Online Contents | 1998
|