Optimal control theory Patrick J. can be used to generate aggressive maneuvers for vehicles under a variety of conditions using minimal assumptions. Although optimal control provides a very powerful framework for generating aggressive maneuvers utilizing fully nonlinear vehicle and tire models, its use in practice is hindered by the lack of guarantees of convergence, and by the typically long time to generate a solution, which makes this approach unsuitable for real-time implementation unless the problem obeys certain convexity and/or linearity properties. In this chapter, we investigate the use of statistical interpolation (e.g., kriging) in order to synthesize on-the-fly near-optimal feedback control laws from pre-computed optimal solutions. We apply this methodology to the challenging scenario of generating a minimum-time yaw rotation maneuver of a speeding vehicle in order to change its posture prior to a collision with another vehicle, in an effort to remedy the effects of a head-on collision. It is shown that this approach offers a potentially appealing option for real-time, near-optimal, robust trajectory generation.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Real-Time Near-Optimal Feedback Control of Aggressive Vehicle Maneuvers


    Contributors:


    Publication date :

    2014


    Size :

    21 Seiten





    Type of media :

    Article/Chapter (Book)


    Type of material :

    Print


    Language :

    English





    Near Real-Time Closed-Loop Optimal Control Feedback for Spacecraft Attitude Maneuvers

    McFarland, C. / Swenson, E. / Black, J. et al. | British Library Conference Proceedings | 2009



    Near Real-Time Closed-Loop Optimal Control Feedback for Spacecraft Attitude Maneuvers

    McFarland, Chester / Swenson, Eric / Black, Jonathan et al. | AIAA | 2009