This paper presents a mirror morphing scheme to deal with the challenging pose variation problem in car model recognition. Conventionally, researchers adopt pose estimation techniques to overcome the pose problem, whereas it is difficult to obtain very accurate pose estimation. Moreover, slight deviation in pose estimation degrades the recognition performance dramatically. The mirror morphing technique utilizes the symmetric property of cars to normalize car images of any orientation into a typical view. Therefore, the pose error and center bias can be eliminated and satisfactory recognition performance can be obtained. To support mirror morphing, active shape model (ASM) is used to acquire car shape information. An effective pose and center estimation approach is also proposed to provide a good initialization for ASM. In experiments, the proposed car model recognition system can achieve very high recognition rate (> 95%) with very low probability of false alarm even when it is dealing with the severe pose problem in the cases of cars with similar shape and color.
Car model recognition by utilizing symmetric property to overcome severe pose variation
Fahrzeugtyperkennung durch Verwendung der Symmetrie-Eigenschaft um Probleme durch Stellungsvariation bewältigen zu können
Machine Vision and Applications ; 24 , 2 ; 255-274
2013
20 Seiten, 16 Bilder, 3 Tabellen, 41 Quellen
Article (Journal)
English
Car model recognition by utilizing symmetric property to overcome severe pose variation
British Library Online Contents | 2013
|British Library Online Contents | 2012
|Face Recognition Under Varying Pose
British Library Conference Proceedings | 1994
|