Much effort has been invested during the past decades in design of parafoils for a wide range of payloads and in development of means for their guidance. Existing parafoils are capable of autonomous navigation using the global positioning system and other onboard sensors. The purpose of this study is to explore the advantages of coordination among multiple autonomous parafoils. Each parafoil is able to navigate to the target on its own by following a realtime-generated reference trajectory. A new method for trajectory generation is presented and behaviour-based rules are developed that control the relative motion of the descending parafoils. The set of simple rules results in an emergent behaviour known as flocking. The coupling between trajectory following and flocking is studied in a multiagent simulation. The simulation uses a realistic six-degrees-of-freedom model of a heavy cargo parafoil. The obtained results demonstrate the possibility of flocking behaviour for guided parafoils. The flocking rules ensure safe separation between the vehicles headed for the same target and allow the parafoils to follow a reference trajectory as a group.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Coupling in-flight trajectory planning and flocking for multiple autonomous parafoils


    Additional title:

    Kopplung der Bahnplanung während des Fluges und der Schwarmlandung für mehrere autonome Lastengleitschirme


    Contributors:
    Rosich, A. (author) / Gurfil, P. (author)


    Publication date :

    2012


    Size :

    30 Seiten, 21 Bilder, 3 Tabellen, 56 Quellen




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English







    Trajectory Planning for Autonomous Parafoils in Complex Terrain

    Le Floch, Brian / How, Jonathan / Breger, Louis et al. | AIAA | 2017


    Robust Trajectory Planning for Autonomous Parafoils under Wind Uncertainty

    Luders, Brandon D. / Sugel, Ian / How, Jonathan P. | AIAA | 2013