The bending-torsional flutter characteristics of a cantilever composite wing subjected to engine thrust are presented. The engine thrust modeled as a follower force and the wing modeled as a two degree of freedom beam. In order to consider the spanwise and chordwise location and the properties of the engine location, the generalized function theory is used. Unsteady Theodorsen aerodynamic theory in time domain, is used. The general laminate composite theory is used for modeling the effects of the ply angles on the flutter boundary. The Ritz method is subsequently applied to convert the partial differential equations into a set of ordinary differential equations. In order to precisely consider the location of the engine Dirac delta function is used. Moreover, the numerical results are compared with the published results and excellent agreement is observed. Numerical results highlighting the effect of engine thrust on the wing instability, is presented.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Bending-Torsional Flutter of a Composite Rectangular Cantilever Wing Subjected to Engine Thrust


    Contributors:


    Publication date :

    2012


    Size :

    5 Seiten




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English