Das Flugsicherungs- und Flugverkehrsmanagementsystem steht vor einem Paradigmenwechsel. Flugzeuge werden zukünftig im so genanntenAutonomous Operations Area Luftraum selbst für die Überwachung und Einhaltung der minimalen Separation verantwortlich sein. Von dieser Verlagerung der Verantwortlichkeit von der Flugsicherung an die Flugdeckbesatzung wird sich sowohl eine bessere und flexiblere Luftraumnutzung, als auch eine effizientere Flugdurchführung versprochen. Um in diesem Luftraum operieren zu können, müssen Flugzeuge mit technischen Systemen ausgestattet werden, die eine Erkennung und Lösung von Luftverkehrskonflikten ermöglichen. Ein solches System hat zur Aufgabe, Konflikte mit anderen Luftraumteilnehmern zu erkennen und eine alternative, konfliktfreie Trajektorie zu berechnen. Dabei werden an die Trajektorie neben der Konfliktfreiheit meist noch die Fliegbarkeit sowie die Berücksichtigung von Optimierungsparametern als Anforderungen gestellt. Zu diesen zählen vor allem die Minimierung des notwendigen Kraftstoffes bzw. der notwendigen Zeit für das Resolutionsmanöver. Diese Arbeit beschäftigt sich mit einem solchen System. Der Fokus liegt dabei auf der Lösung von Verkehrskonflikten unter gleichzeitiger Gewährleistung der Fliegbarkeit sowie der Integration eines Kostenindexes. Der Kostenindex, welcher heutzutage vom Flight Management System zur Bahnoptimierung verwendet wird, gibt das vom Flugzeugbetreiber angegebene Verhältnis von kraftstoffbezogenen zu zeitbezogenen Kosten an. Dieser Parameter wird im Rahmen dieser Arbeit in einen Konfliktlösungsalgorithmus auf Grundlage von künstlichen Kraftfeldern integriert. Die Fliegbarkeit der resultierenden Trajektorie wiederum wird durch Nutzung eines flugmechanischen Modells adressiert und bewertet. Der in dieser Arbeit entwickelte Algorithmus wird in Schnellzeitsimulationen mit varierendem Kostenindex bewertet. Ziel der Auswertungen ist es die Konfliktfreiheit und Fliegbarkeit der resultierenden Trajektorie, sowie die Berücksichtigung des Kostenindex zu überprüfen. Dazu werden die alternativen Trajektorien mit der originalen, konfliktbehafteten Trajektorie des Flugzeuges und die Entfernungen am Punkt der geringsten Annäherung verglichen. Die laterale, vertikale und temporale Abweichung der alternativen Trajektorie zur originalen Trajektorie werden als Maß für die kraftstoffbezogenen, respektive zeitbezogenen Kosten verwendet und gegenüber gestellt. Die Simulationsergebnisse zeigen, dass die Fliegbarkeit der Trajektorie durch die Integration des flugmechanischen Modells gewährleistet werden konnte. Während jedoch der provozierte Zusammenstoß der Flugzeuge durch den Konfliktlösungsalgorithmus auch in den betrachteten Grenzfallen verhindert werden konnte, wurde die minimal notwendige Separation nicht in jedem Fall hergestellt. Auch hat sich die Integration des Kostenindex als praktikabel gezeigt, wobei jedoch noch Verbesserungspotential vor allem in Bezug auf die Geschwindigkeitsresolution identifiziert werden konnte.

    A paradigm shift is at hand with the planned redesign of the Air Traffic Management and Air Traffic Control systems. The concept for the future air trafik system foresees that aircraft will monitor and maintain separation to each other by themselves in Autonomous Operations Area airspace. With this shift of responsibility for separation assurance from Air Trafic Control to the flight deck crews a more flexible and better airspace usage is expected. Furthermore, through the more flexible airspace usage, a gain in flight efficiency is also anticipated. In order to operate in this airspace area, aircraft are required to be equipped with a system enabling them to detect and resolve air traffic conflicts. Upon detection of a conflict with another aircraft, the system is expected to compute an alternative trajectory which guides the aircraft around the conflict and back to its original trajectory. The alternative trajectory needs to adhere to several requirements, such as being clear of conflicts and being flyable. Further requirements that are often stated are to minimise the additional fuel and time required for the resolution. This thesis is concerned with such a Conflict Detection & Resolution system. Primary focus lies on the resolution of air traffic conflicts while guaranteeing flyability and respecting the Cost Index. The Cost Index is nowadays used by the Flight Management System to optimise the flight profile in respect to the operators prioritisation of fuel-related to time-related costs. This parameter is included into the Conflict Resolution process which is based on Artificial Force Fielcis. Flyability of the trajectory is intended to be guaranteed through integration of a flight mechanics model. The algorithm devised in this work is validated in fast time simulations with varying Cost Index. Objects of study are the distance at the Closest Point of Approach, the integration of the Cost Index and the flyability of the resulting trajectory. The first two objects of this study will be validated through comparison of the original and updated trajectory. The new trajectory is considered conflict free if the distance at the Closest Point of Approach is sufficiently large. The lateral, vertical and temporal differences between the two trajectories are used as measures for time- and fuel-related costs. Flyability of the resulting trajectory is validated by confirming adherence to the flight envelope and the constraints given by the flight mechanics model used. The evaluation of the algorithm showed that by integration of a flight mechanics model flyability of the resulting trajectory could be assured. Regarding resolution of the conflicts, the algorithm could compute a trajectory which prevented the initially set up Mid-Air Collision between the aircraft. Though, the minimum required separation could not be achieved in all cases. The approach of integrating the Cost Index into the resolution process showed to be feasible, whereas especially regarding the speed resolution further enhancements have been to be necessary.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Conflict resolution in autonomous operations area airspace


    Contributors:

    Publication date :

    2010


    Size :

    183 Seiten, Bilder, Tabellen, Quellen



    Type of media :

    Theses


    Type of material :

    Print


    Language :

    English




    Real-Time Autonomous Trajectory Conflict Detection and Resolution in Restricted Airspace

    Chen, Yutong / Yang, Lei / Zhang, Haoran et al. | IEEE | 2020


    CONFLICT RESOLUTION FOR MALFORMED BLOCKED AIRSPACE DESIGNATIONS

    HAMMERSLA III WILLIAM EDWARD / GALINDO JOE / OBERMAN JUSTIN P et al. | European Patent Office | 2023

    Free access

    Autonomous System Technologies for Resilient Airspace Operations

    Houston, Vincent E. / Le Vie, Lisa R. | NTRS | 2017


    Ground Assisted Conflict Resolution in Self-Separation Airspace

    Chaloulos, Georgios / Roussos, Giannis / Lygeros, John et al. | AIAA | 2008


    Airborne Conflict Resolution for Flow-Restricted Transition Airspace

    Mondoloni, Stephane / Ballin, Mark / Palmer, Michael | AIAA | 2003