Dielectric barrier surface discharges (DBD) have the potential to act as flush mounted flow control devices for separation control and other aeronautic applications. A pulse-sustained plasma with the ions driven by a DC bias voltage is proposed for optimum performance. The work indicates that sustaining the plasma with repetitive high voltage nanosecond pulses and driving the ions with a bias leads to significantly improved performance of the flush mounted DBD surface control jet as compared to the conventional configuration driven with a sinusoidal high voltage. Ion charge build up on the dielectric surface inhibits the performance both for the conventional DBD configuration and for the pulse sustained concept. In order to suppress the charge build up, the authors show that either a reversing bias or a new electrode configuration can be used. The new electrode configuration exposes the lower electrode downstream of the dielectric coating, and thus provides a route for charge bleed off. Using this configuration, a DC bias can be applied leading to 100% duty cycle and high performance at low bias voltage. Scaling suggests that higher DC biases will lead to much improved performance compared to both the pulse sustained reversing bias configuration and the conventional sinusoidal configuration.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Non-thermal atmospheric pressure plasmas for aeronautic applications


    Additional title:

    Nicht-thermische Plasmen bei atmosphärischem Druck für aeronautische Anwendungen


    Contributors:


    Publication date :

    2008


    Size :

    7 Seiten, 10 Bilder, 11 Quellen


    Remarks:

    (nicht paginiert)


    Type of media :

    Conference paper


    Type of material :

    Storage medium


    Language :

    English




    AERONAUTIC CRAFT

    SHCHEPOCHKINA YULIYA ALEKSEEVNA | European Patent Office | 2018

    Free access

    AERONAUTIC APPARATUS

    SHCHEPOCHKINA JULIJA ALEKSEEVNA | European Patent Office | 2016

    Free access

    Aeronautic insurance

    Neal, Erik | NTRS | 1922


    Aeronautic exhibits

    Bresch, L. | Engineering Index Backfile | 1911


    Aeronautic proposals

    Engineering Index Backfile | 1928