Insect-like flapping flight offers a power-efficient and highly manoeuvrable basis for micro air vehicles for indoor applications. Some aspects of the aerodynamics associated with the sweeping phase of insect wing kinematics are examined by making particle image velocimetry measurements on a rotating wing immersed in a tank of seeded water. The work is motivated by the paucity of data with quantified error on insect-like flapping flight, and aims to fill this gap by providing a detailed description of the experimental setup, quantifying the uncertainties in the measurements and explaining the results. The experiments are carried out at two Reynolds numbers - 500 and 15,000 - accounting for scales pertaining to many insects and future flapping-wing micro air vehicles, respectively. The results from the experiments are used to describe prominent flow features, and Reynolds number-related differences are highlighted. In particular, the behaviour of the leading-edge vortex at these Reynolds numbers is studied and the presence of Kelvin-Helmholtz instability observed at the higher Reynolds number in computational fluid dynamics calculations is also verified.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Experimental investigation of some aspects of insect-like flapping flight aerodynamics for application to micro air vehicles


    Additional title:

    Experimentelle Untersuchung einiger Aspekte der insektenähnlichen Schlagflugaerodynamik für den Einsatz in Mikroluftfahrzeugen


    Contributors:

    Published in:

    Experiments in Fluids ; 46 , 5 ; 777-798


    Publication date :

    2009


    Size :

    22 Seiten, 22 Bilder, 2 Tabellen, 45 Quellen




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English