Results of computational work demonstrating magnetogasdynamic flow control within the internal inlet of a fullscale, Mach 10 scramjet engine simulation are presented. As part of the analysis, a control volume approach with an electron beam ionization model is presented for the first time in the context of the established computational method used. The authorselektromagnetic i conclude that applying magnetogasdynamic interaction entirely upstream of a expansion-induced flow separation zone was not effective at improving the inlet efficiency. For most parameters tested, any pressure gains incurred in the region of electromagnetic interaction were all but negated by an additional sidewall expansion at the inlet throat. Magnetogasdynamic acceleration can efficiently reduce the net inlet drag in some cases while minimizing the increase in heat transfer and decrease in overall efficiency measures. Finally, placement of the electromagnetic interaction region near the wall was the most important factor in determining the wall heat transfer and proved to be a relatively efficient method for limiting drag increases. However, further work is recommended to determine the optimum distance from the wall to target the electron beam ionization.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Computational study of magnetogasdynamic inlet flow control on a flight-scale scramjet


    Additional title:

    Rechnerische Untersuchung der magnetogasdynamischen Eintrittsströmungsregelung in einem Scramjet in Flug-Größe



    Published in:

    AIAA Journal (online) ; 45 , 6 ; 1258-1269


    Publication date :

    2007


    Size :

    12 Seiten, 21 Bilder, 1 Tabelle, 30 Quellen




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English




    Computational Study of Magnetogasdynamic Inlet Flow Control on a Flight-Scale Scramjet

    Martin Lindsey / Richard McMullan / Datta Gaitonde et al. | AIAA | 2007



    Computational Study of MGD Flow Control on a Flight-Scale Scramjet

    Lindsey, Martin / McMullan, Richard | AIAA | 2006


    Computational Study of MGD Flow Control on a Flight-Scale Scramjet (AIAA 2006-0371)

    Lindsay, M. F. / McMullan, R. J. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2006


    Computational Fluid Dynamic Analysis of Scramjet Inlet

    Rozario, Dexter / Zouaoui, Zoubir | AIAA | 2007