Vehicle movement on unpaved surfaces is important to military, agriculture, forestry, mining, construction and recreation industries. Because of the complicated nature of vehicle-terrain interaction, comprehensive modelling of off-road mobility is often done using empirical algorithms. The desire to incorporate more physics onto performance models has generated great interest in applying numerical modelling techniques in a full three-dimensional analysis, accounting for the deformation of both the tire and the terrain. In this study, a three-dimensional finite element model was constructed to simulate a tire rolling over snow. The snow was modelled as an inelastic material using critical-state constitutive modelling and plasticity theory. The snow material was generated from experiments on the mechanical deformation of snow and was validated using a plate sinkage test. The tire models represent a range of sizes accommodating light-truck and off-road military vehicles and were rolled on snow of various depths. The combined tire-terrain models were validated using force measurements collected with instrumented vehicles and with measured snow deformation. The model results were also compared to vehicle mobility predictions made using the winner algorithms of the NATO reference Mobility Model. These comparisons illustrate the agreement between the finite element models and field measurements of motion resistance forces and snow deformation under the tire.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Finite element modeling of tires on snow


    Contributors:
    Shoop, S. (author) / Kestler, K. (author) / Haehnel, R. (author)


    Publication date :

    2006


    Size :

    36 Seiten, 27 Bilder, 2 Tabellen, 52 Quellen




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Finite Element Modeling of Tires on Snow

    Shoop, S. | Online Contents | 2006


    SNOW COVER FOR TIRES

    SOUYRI PHILIPPE / IGIER EMMANUEL | European Patent Office | 2023

    Free access


    DISPOSABLE SNOW CHAINS FOR AUTOMOTIVE TIRES

    JANG YOUNG HYUN | European Patent Office | 2018

    Free access

    Spike protruding snow tires by air injection

    JUNG HYUN JIN | European Patent Office | 2022

    Free access