The Space Solar Power System (SSPS) can supply stable electricity regardless of weather conditions or daylight hours, and reduce the amount of carbon dioxide emission in generating electricity, therefore application of the SSPS will make a contribution to global environmental problems and energy security problems in Japan. Institute for Unmanned Space Experiment Free Flyer (USEF) organized a committee with a support of METI (Ministry of Economy, Trade and Industry) and performed the SSPS feasibility study during FY 2001 and 2002. An SSPS working committee was organized under the committee. The study team composed of the researchers from universities and national laboratories has made a conceptual study for practical SSPS. A solar power system in which a large flat panel with a capability of power generation and transmission is suspended by multi-wires, has been proposed as an innovative SSPS. The tethered SSPS concept is highly robust and potentially low cost, with special features in the integration, construction, attitude control, heat management, and evolutional development strategy. Towards the practical tethered SSPS of GW level in the future, a demonstration experiment satellite in the near future with the 100kW level on low earth orbit to verify the essential technology for SSPS has been investigated. The economic aspects for the practical SSPS including the construction cost, power generation cost and the electricity price has been estimated. The lifecycle carbon dioxide emission for the practical SSPS has been estimated. The result indicates that the carbon dioxide emission from the practical SSPS per unit of energy generated is almost the same as from nuclear power system and much less than fossil fuel power system. The roadmap to the practical SSPS has been proposed.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    SPACE NUCLEAR POWER FOR TERRESTRIAL UTILITIES

    Schubert, Peter | TIBKAT | 2022




    Aircraft utilities and power distribution system

    NEHMEH JODY N | European Patent Office | 2016

    Free access

    ENHANCING TERRESTRIAL SOLAR POWER USING ORBITING SOLAR REFLECTORS

    Çelik, Onur / Viale, Andrea / Oderinwale, Temitayo et al. | TIBKAT | 2022