This paper presents the development of an automated intersection accident detection system via digital audio signal processing. Audio signals at busy intersections are the inputs to the system. The system is composed of three main signal processing stages: feature extraction, feature reduction, and classification. The results of the study show that the wavelet-based feature extraction in combination with the maximum likelihood classifier is the optimum design. The system is computationally inexpensive, and consistently results in accident detection accuracies of 95 % to 100 % with a very low false alarm rate in multiple stages of testing in the lab and also in a real-time real-world environment.
Development of an automated accident detection system at intersections
Die Entwicklung eines automatisierten Unfall-Erkennungs-Systems an Kreuzungen
2004
5 Seiten, 9 Quellen
Conference paper
English
Signalverarbeitung , Maximum-Likelihood-Schätzung , Fahrstraße , Algorithmus , Rechenverfahren , Wavelet-Transformation , Tonsignal , statistisches Verfahren , Verkehrsunfall , Straßenverkehr , Klassifikationssystem , Alarmsystem , Zuverlässigkeit , Versuchsergebnis , Probelauf , Merkmalextraktionsverfahren , Straßenkreuzung , Verkehrsüberwachung
Development of an Automated Accident Detection System at Intersections
British Library Conference Proceedings | 2004
|Automated Accident Detection in Intersections via Digital Audio Signal Processing
Transportation Research Record | 2003
|Automated Accident Detection in Intersections via Digital Audio Signal Processing
Online Contents | 2003
|Accident Detection at Intersections for ITS
British Library Conference Proceedings | 1995
|