The Airborne Laser (ABL) system has extremely tight jitter requirements. Acoustic disturbances, such as those caused by the pressure recovery system of the high power laser, are a significant jitter source. Several technologies may be appropriate for reducing the acoustically induced jitter. The first choice for mitigation will be passive approaches, such as acoustic blankets. There is, however, some uncertainty whether these approaches will provide sufficient attenuation and there is concern about the weight of these approaches. A testbed that captured the fundamental physics of the ABL acoustically induced optical jitter problem was developed. This testbed consists of a flexure-mounted mirror exposed to an acoustic field that is generated outside a beam tube and then propagates within the tube. Both feedback and adaptive feedforward control topologies were implemented on the testbed using either of two actuators (a fast steering mirror and a secondary acoustic speaker located near the precision mirror), and a variety of sensors (microphones measuring the acoustic disturbance, accelerometers and microphones mounted on the precision optic, and an optical position sensing detector). This paper summarizes the results from these control topologies for reducing the acoustically induced jitter with some control topologies achieving in excess of 40 dB jitter reduction at a single frequency.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Active suppression of acoustically induced jitter for the Airborne Laser


    Contributors:


    Publication date :

    2000


    Size :

    14 Seiten, 2 Quellen




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Jitter Control of Space and Airborne Laser Beams

    Watkins, R. Joe / Agrawal, Birj / Shin, Young et al. | AIAA | 2004



    Engine jitter suppression method

    XU JUNFENG | European Patent Office | 2022

    Free access

    Acoustically active head rest

    CHRISTOPH MARKUS / PFAFFINGER GERHARD / SCHOLZ LEANDER | European Patent Office | 2022

    Free access

    Jitter Suppression Using Particle Dampers

    Simonian, Stepan / Camelo, Vanessa / Sienkiewicz, Jacqueline | AIAA | 2007