The characterization of the behaviour of nonlinear aeroelastic systems has become a very important research topic in the Aerospace Industry. However, most work carried to-date has concentrated upon systems containing structural or aerodynamic nonlinearities. The purpose of this paper is to study the stability of a simple aeroservoelastic system with nonlinearities in the control system and power control unit. The work considers both structural and control law nonlinearities and assesses the stability of the system response using bifurcation diagrams. It is shown that simple feedback systems designed to increase the stability of the linearized system also stabilize the nonlinear system, although their effects can be less pronounced. Additionally, a nonlinear control law designed to limit the control surface pitch response was found to increase the flutter speed considerably by forcing the system to undergo limit cycle oscillations instead of fluttering. Finally, friction was found to affect the damping of the system but not its stability, as long as the amplitude of the frictional force is low enough not to cause stoppages in the motion.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Characterization of the behavior of a simple aeroservoelastic system with control nonlinearities


    Additional title:

    Verhalten eines aeroservoelastischen Systems mit nichtlinearer Regelung


    Contributors:

    Published in:

    Publication date :

    2000


    Size :

    21 Seiten, 25 Bilder, 3 Tabellen, 25 Quellen




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English




    Aeroservoelastic Response Simulation with Geometric Nonlinearities Using Full Finite-Element Models

    Gov, Favel / Karpel, Moti | British Library Conference Proceedings | 2016


    Adaptive aeroservoelastic control

    Tewari, Ashish | TIBKAT | 2016



    Rigid-Body Issues in FFT-Based Dynamic Loads Analysis with Aeroservoelastic Nonlinearities

    Karpel, Moti / Shousterman, Alexander / Mindelis, Ya'akov | AIAA | 2012


    Rigid-Body Issues in FFT-Based Dynamic Loads Analysis with Aeroservoelastic Nonlinearities

    Karpel, M. / Shousterman, A. / Mindelis, Y. et al. | British Library Conference Proceedings | 2012