This paper gives an overview on methods used for the generation of system matrices fitted to test results by updating and direct identification of dynamic mathematical models. Comments on the applicability of these methods to real structures are given. Emphasis is on the discussion of direct update methods and possibilities to improve these methods. A special direct update method published by Berman with variants of Baruch and improvements by the author is described, which solves the update problem with minimum computational effort. A more general mathematical formulation of this linear least squares problem is discussed, which overcomes some of the disadvantages of the special formulation but for the price of significantly increased computational effort.
Update and identification of dynamic mathematical models
Stand und Identifizierung von mathematischen Modellen der Dynamik
Proc. of the 4th Int. Modal Analysis Conf., Union College-Schenectady ; 1 , Feb ; 394-401
1986
8 Seiten, 4 Bilder, 5 Tabellen, 11 Quellen
Conference paper
English
MODALANALYSE , MATHEMATISCHES MODELL , RAUMFAHRZEUG , LUFTFAHRZEUG , DYNAMISCHES VERHALTEN , SCHWINGUNGSSYSTEM , DYNAMISCHE BELASTUNG , MATRIZENRECHNUNG , MATHEMATISCHE TRANSFORMATION , QUADRATISCHE FUNKTION , METHODE DER KLEINSTEN QUADRATE , SYSTEMTHEORIE , SYSTEMVERGLEICH , MODELLMETHODE , MATHEMATISCHES VERFAHREN
SAE Technical Papers | 1985
|