A control system is presented for three-axis, gas jet, satellite attitude control having application to any spacecraft where precise pointing is required within stringent mass and power limitations. Serveral novel features are incorporated as follows: parabolic switching boundaries are employed with parameters which adapt to a disturbing acceleration estimate in order to achieve a zero offset steady-state limit cycle of preset amplitude in the arcsecond region which minimizes both fuel consumption and thruster operation frequency. The disturbing acceleration estimate is obtained from a third-order state estimator, together with angle error and rate estimates using an angle error measurement from a rate integrating gyro and a jet drive input. Time optimal recovery from large initial angle errors and rapid response to step changes in disturbing accoleration are achieved. In addition, stable control is obtained with disturbing acceleration approaching the control jet acceleration. A slew control algorithm is incorporated which enables the same control law to be utilized for fuel optimal slewing through unlimited angles, one axis at a time. Simulation results are presented, including demonstration of stochastic performance with gyro and jet noise.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Adaptive, high precision, satellite attitude control for microprocessor implementation


    Additional title:

    Eine hochgenaue adaptive Lageregelung fuer Satelliten unter Verwendung von Mikroprozessoren


    Contributors:
    Dodds, S.J. (author)

    Published in:

    Automatica, Oxford ; 17 , 4 ; 563-573


    Publication date :

    1981


    Size :

    11 Seiten, 11 Bilder, 4 Quellen



    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English




    Precision Tethered Satellite Attitude Control

    R. J. Kline-schoder | NTIS | 1990


    Precision tethered satellite attitude control

    Kline-Schoder, Robert J. | NTRS | 1990


    High-Precision Attitude Control of Remote Sensing Satellite

    Lebedev, D. V. / Tkachenko, A. I. / International Federation of Automatic Control | British Library Conference Proceedings | 2004