The methods to evaluate the robustness of a network have been extensively studied. Such methods often require obtaining traffic equilibrium conditions or solving mathematical problems, and these methods can only be applied to a network of limited size. On the other hand, nowadays detail road network data can be downloaded freely, and such data may provide different insights on network robustness evaluation. This paper applies the capacity-weighted eigenvector centrality method to identify the strongly and weakly connected parts of large networks. The eigenvector centrality is one of the evaluation methods based on network topology with a small computational load. This method can be applied to directed networks and does not require their adjacency matrices to be symmetric. Several numerical examples showed that the capacity-weighted eigenvector centrality analysis can identify the strongly and weakly connected parts of the network, and it can be used to evaluate connectivity of network for robustness.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Connectivity evaluation of large road network by capacity-weighted eigenvector centrality analysis


    Contributors:

    Published in:

    Publication date :

    2021-12-10


    Size :

    27 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown






    Centrality Characteristics of Road Network Patterns of Traffic Analysis Zones

    Zhang, Yuanyuan / Wang, Xuesong / Zeng, Peng et al. | Transportation Research Record | 2011


    Vulnerability Analysis of Casablanca Road Network by Capacity Weighted Spectral Analysis

    Jiang, Meilan / Mourabiti, Othman El / Miwa, Tomio et al. | Transportation Research Record | 2022